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1 Background

Functional genomics can be defined as:

an area of study aimed at determining the function of genes and the
proteins they encode in determining traits, physiology or develop-
ment of an organism. Generally the term is used for an experimental
approach utilizing computational and high-throughput technologies
at the level of whole genomes. [1]

Ambitious in breadth and scope, these high-throughput experimental ap-
proaches produce volumes of interrelated data, many of which are in completely
different native formats. Much worse, all of these data are, for the most part,
completely disassociated from the experimental protocol information that led
to the data.

Recent data transfer standards and reporting recommendations have allevi-
ated some of these concerns for a subset of technologies [2, 3, 4, 5], but only
for those technologies. In each case, the standards body chose to model shared
aspects of functional genomics experiments independently, using different vo-
cabularies and levels of detail. The result is that each standard represents
semantically equivalent information in syntactically incompatible ways.
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When proposals for data standards for microarray (MAGE) [5] and pro-
teomics (PEDRo) [2] technologies emerged, attempts were made to merge these
models into a single standard, with varying degrees of success [6, 7]. The con-
clusion from these efforts is that a comprehensive standard for microarrays and
proteomics would be large and complex, hindering adoption by the community
and vendors. Furthermore, the standard would still leave much of the functional
genomics domain unaccounted for.

Instead of trying to provide a complete stand-alone solution, we have at-
tempted to model the common aspects of functional genomics experiments, such
as sample preparation, contact information, and protocols, and tackle the prob-
lem of representing different functional genomics technologies in two ways.

First, we provide general structures for referencing external data formats
while capturing the meta data that gives the format a context within an entire
investigation. The external files can either be open standards, or proprietary
formats. Such a mechanism allows us to leverage the currently available formats,
and in addition allows the collation and annotation of functional genomics ex-
periments that cross technologies. It also allows one to augment a standard that
does not provide as rich a model for defining sample preparation.

Second, these same reference points act as placeholders for defining exten-
sions to the model that are specific to a functional genomics technology. Such
extended models gain a rich set of functionality from the core model, as well as
having a structural basis shared with other standards, enabling future integra-
tion of data.

The Functional Genomics Experiment (FuGE) object model seeks to provide
a framework for standards development efforts in the life science domain. It is
subdivided into two main areas, one providing the basic functionality needed
for data standards in general (FuGE.Common), and the other providing specific
modules tailored for biological data standards (FuGE.Bio), such as structures
to capture details of experimental design and annotation of biological samples.

In the following section, there are descriptions of these two main areas of
the FuGE model. This document does not cover all aspects in depth but instead
aims to provide a solid introduction to the main concepts. We refer to the
developer documentation for further reading [8]. Since FuGE is specified using
the Universal Modeling Language (UML) [9], it is assumed that the reader
is familiar with some basic object oriented concepts, such as objects, classes,
packages and inheritance, although this is not essential.

2 Results

2.1 The FuGE Object Model

The FuGE object model seeks to provide a framework to assist the development of
other biological data standards. It does so by providing a UML abstract model of
the concepts common to most functional genomics experiments. Model-Driven-
Architecture (MDA) approaches are then used to generate platform-specific im-
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Figure 1: The main set of base classes in FuGE . All subsequent classes in-
herit from either one or both of the two abstract classes Describable and
Identifiable.

plementations of the model, such as an XML schema, a relational database
schema, and software libraries. The XML Schema is of primary interest for
standardisation, since it specifies the data transfer format in XML and allows
data to be validated against the standard.

The FuGE.Common package provides a solid foundation for data standards
from any domain as it does not contain any information specific to biological
investigation. FuGE.Common provides mechanisms for referencing external data-
bases, controlled vocabularies, auditing and security, which are described in the
rest of Section 2.1

Every object of the FuGE model is a descendent of either one or both of
two base classes (Figure 1), which are themselves arranged in a hierarchy. The
first and most basic class, Describable, provides functionality for aiding in-
house management of the format, enabling the annotation of objects with plain
text or with controlled vocabulary terms. Every object in FuGE is a subclass
of Describable, which allows a URI to be specified for the object and audit
information to be attached, such as managing changes to the document (when,
who and what change has been made, Figure 2). Describable also provides
a mechanism for specifying the security settings of the object, such as groups
of users that have read or write access. Much of the support mechanisms for
defining a rich standard are represented by the associations from this class.

3



Audit

-action : enum {creation,modification,deletion} [1]
-date : Date [1]

OntologyTerm

+ontologyTermURI : URI [0..1]
+ontologyURI : URI [0..1]

OntologyTerm

+ontologyTermURI : URI [0..1]
+ontologyURI : URI [0..1]

-tollFreePhone : String [0..1]

-address : String [0..1]
-phone : String [0..1]
-email : String [0..1]
-fax : String [0..1]

Contact

Person

-midInitials : String [0..1]

-lastName : String [0..1]
-firstName : String [0..1]

SecurityAccess

SecurityGroup

Organization

ContactRole

Security

Affiliations

+affiliations

0..*0..*

Owner

+owner

0..*

0..*

Members
0..*

+members

1..*

AccessGroup

0..*

+accessGroup

1
AccessRight

0..*

+accessRight

0..1
Performer

+performer

0..10..*

Parent+parent

0..1

0..*

SecurityRights

+securityRights0..*

1

Contact

+contact
1

0..*

Role

+role
1

0..*

Figure 2: The Audit package allows an audit trail and security settings to be
attached to objects.
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The other base class, Identifiable, inherits from Describable (thus gain-
ing all of its functionality) and adds a referencing mechanism. As the name
Identifiable suggests, classes which inherit from it are able to be referenced
by other classes. This is done by virtue of the identifier attribute. The
identifier attribute is understood to be a globally unique string that resolves
a particular instance of the object. The “globally unique” restriction implies
that there is exactly one and only one object with a particular identifier, and
that this identifier must always reference only that particular object. The name

attribute stores a human readable name for the object that need not be unique.
When using FuGE within internal pipelines the definition of “global” can

be relaxed to mean “system-wide”, since the identification string need only be
unique within that system. The globally unique issue arises only if the data are
to be published to central repositories or shared among collaborators. When
this situation arises, one can always qualify internal identifiers with a prefix such
as the name of the institution. Another alternative is the life science identifier
(LSID) proposal [10]. In the Web services world, identifiers usually take the
form of URLs.

The use of globally unique identifiers provide several practical advantages,
such as compact representation within file formats. For example, entities such
as biological samples with rich sets of annotations can be referred to using their
respective identifier. The underlying data store or data transfer standard can
then save space if the object has been used in multiple settings by utilizing this
string instead of repeating the information. The Identifiable objects also
allow for federated data stores, by enabling large and complex experiments to
be broken down into more easily manageable components while not losing the
relationships that exist between each piece.

2.1.1 Referencing Outside Sources of Information

Descendants of Identifiable are also able to provide references to outside
sources of information. Identifiable objects reference these external sources
via the DatabaseEntry class. A DatabaseEntry contains a reference to the
source of the entry (the Database), as well as the string, stored in the accession
attribute, used within that source to identify uniquely the concept being ref-
erenced by the FuGE object. The use of the name “accession” highlights the
distinction between FuGE identifiers and another system’s identification scheme.
These outside sources have no knowledge of FuGE, or the way in which FuGE de-
fines identification strings. They also do not constrain their internal identifiers
to be globally unique with respect to other sources. However, this mechanism
could also be used for referencing a FuGE object stored in a database.

FuGE can be described as a reference model, in that it is designed not to
recreate an external system’s representation of a concept. Any information ref-
erenced from an external source must be interpreted within that system, not
FuGE. This is especially important when referencing terms from an ontology.
Ontologies are developed by specific user communities for their particular do-
main. The terms within an ontology have interdependent relationships that
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+ontologyTermURI : URI [0..1]
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DataProperty

+dataType : String [0..1]
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Content
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+content1..*
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0..*

+properties
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Figure 3: OntologyTerm represents instance terms from outside ontological
sources.

define the full scope of each term. When evaluating whether an association
from FuGE object to an ontology term is semantically correct, one would need
to put the term in its proper context. Specifically, one would need to evaluate
whether the annotation was correct given the definition of the term within its
source system and the association to other terms in the ontology that may or
may not have been referenced by the FuGE object.

It is vital for understanding FuGE that inheritance from these two base classes
is ubiquitous to all objects. When reading the rest of this document, it is im-
portant to remember that all objects have the Describable functionality and
most have the Identifiable functionality, but that these attributes and asso-
ciations are not shown on the UML diagrams. We refer the reader to the FuGE

developer’s documentation [8] to determine whether a class is Identifiable.

2.1.2 Referencing external vocabularies and ontological sources

The use of standard vocabularies and ontologies for annotation of experimental
data is vital to the goal of combining data from different functional genomics
technologies. FuGE provides a rich model for referencing terms from arbitrary
external ontology sources. The OntologyIndividual class provides a mecha-
nism for representing ontological classes, instances of classes and terms from
simple controlled vocabularies (Figure 3). The source of a term can be specified
using the attributes ontologyURI or ontologyTermURI. The name attribute, in-
herited from Identifiable, stores the term itself (or the name of the ontology
class), and the identifier attribute stores a unique identifier for the instance
of the term used within FuGE.
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In an ontology, classes can be related to each other through associations.
Such associations are modelled in FuGE by the abstract class OntologyProperty.
If the association is between two terms, ObjectProperty models the as-
sociation from the parent concept to the child that is also modelled by
OntologyIndividual. The ObjectProperty class is required, rather than sim-
ply having a self-association on OntologyIndividual, because the association
itself may be a named concept in the ontology with a definition that should be
referenced, for example using the ontologyTermURI attribute. A second type of
association exists in ontologies, modelled by DataProperty, which specifies that
a value can be entered by the user of the ontology to complete the concept. In
various parts of the FuGE model there are defined associations to OntologyTerm

for capturing ontological information. The associations are to OntologyTerm

rather than to OntologyIndividual to allow the user to import an ontology
class or instance (OntologyTerm), an ontology property (OntologyProperty)
or a data property (DataProperty). However, it is expected that in the major-
ity of instances, the associations will be used to associate with ontology classes
or instances, using OntologyIndividual.The examples below demonstrates the
use of these classes within a practical setting.

A simple controlled vocabulary term (the species name Mus musculus) can
be represented by this structure:

<OntologyIndividual identifier="FuGE.OI.1001" name="Mus musculus"

ontologyURI="http://www.ncbi.nlm.nih.gov/Taxonomy"/>

The following example demonstrates the representation of a more complex
concept. In this case, the concept (“4 hours”) is modelled as a measurement
with a value and a unit.

<OntologyIndividual identifier="FuGE.OI.1003" name="Measurement"

ontologyTermURI="http://mged.sourceforge.net/ontologies/MGEDontology.php#Measurement">

<properties>

<DataProperty identifier="FuGE.DataProperty.101" value="4" name="has_value"

ontologyTermURI="http://mged.sourceforge.net/ontologies/MGEDontology.php#has_value"/>

<ObjectProperty identifier="FuGE.ObjectProperty.101" name="has_unit">

<content>

<OntologyIndividual_ref identifier_ref="FuGE.OI.1004"/>

</content>

</ObjectProperty>

</properties>

</OntologyIndividual>

<OntologyIndividual identifier="FuGE.OI.1004" name="hours"

ontologyTermURI="http://mged.sourceforge.net/ontologies/MGEDontology.php#hours"/>

2.1.3 Protocols and Workflows

A protocol in functional genomics usually consists of a procedure described by a
set of ordered actions. The procedure may have a set of inputs, parameters, and
produces a set of outputs. Complex protocols can be broken down into a set
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Figure 4: The package representing the abstract structure of all FuGE protocols
in functional genomics experiments.

of simpler protocols that may or may not have their own specific parameters,
inputs and outputs. The FuGE.Common.Protocol package has structures to
represent these requirements.

The FuGE Protocol package is separated into two parts: i) providing an
abstract representation of how a protocol should be structured, which can be
extended for modular formats and ii) providing non-abstract classes that can
be used without extension. The abstract classes Protocol, Action, Equipment,
Software and Parameter fall into category i), denoted by the class name shown
in italic. These classes cannot be instantiated as they are, because it is in-
tended they should be extended by subclassing to create specific modules.
In addition to the abstract classes in the Protocol package, a set of non-
abstract classes are provided in FuGE that can be used without extension, called
GenericProtocol, GenericAction, GenericEquipment, GenericSoftware and
GenericParameter (Figure 5). These classes can be instantiated with user en-
tered text and ontology terms to capture the details of the protocol as described
below.

The individual steps of a GenericProtocol are designated by the
GenericAction class (Figure 5). A GenericProtocol contains an ordered set of
GenericActions. These GenericActions are understood to be atomic instruc-
tions such as “wait 10 minutes”. The order of an GenericAction is determined
by the actionOrdinal attribute (inherited from Action). GenericActions with
duplicate ordinals are understood to be conducted in parallel. A GenericAction

can be specified either by free text entered by the user or it can reference an
ontology containing a standard action term, such as the MGED Ontology (MO,
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Figure 5: The package representing definitions of protocols that can be used
without extension. GenericProtocols have associations to GenericEquipment,
GenericSoftware and GenericParameters. GenericProtocols also contain a
set of ordered GenericActions which may exclusively define text for the action,
reference an ontology term defining that action, or reference a sub-protocol (for
representing complex protocols).
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Protocol 1

Action 1

Action 2

Action 3

Parameter 1 Parameter 2

Protocol 2

Figure 6: A summary of the structure of a protocol in FuGE that has two para-
meters and three actions, one of which is a reference to a further protocol.

[11]). GenericProtocol has associations inherited from Protocol that can be
used to specify the intended input and output types using ontology terms, such
as certain material or data types.

Complex procedures, or workflows, in laboratories are usually composed of a
set of simpler protocols that are to be completed in some particular order. Since
the GenericProtocol class is Identifiable, defining these types of complex
workflows is straightforward, by creating new GenericProtocols that reference
the simpler ones. Sub-protocols are referenced using the GenericAction class,
thus inheriting the same ordering scheme and allowing combinations of simple
instructions among the references to sub-protocols (Figure 6 shows a simplified
diagram of the FuGE representation of protocols).

The GenericProtocol class can have a set of defined parameters, mod-
eled by associations to the GenericParameter class (Figure 5). Each
GenericParameter has associations inherited from Parameter (Figure 7) al-
lowing a type (the parameter name and data type of float, Boolean, String
etc.) and a default value to be specified via associations to an outside on-
tology. The actual values used when a protocol is implemented are recorded
by GenericProtocolApplication, as described below. A GenericProtocol

can be associated with GenericEquipment and GenericSoftware, which can
also have a set of parameters defined with controlled vocabulary terms. There
is an association between GenericEquipment and GenericSoftware to record
that a piece of software is intrinsically linked to an instrument, which may
be important if a GenericProtocol is associated with numerous instances of
GenericEquipment and GenericSoftware.

Frequently, deviations from the default parameter values of a protocol must
be recorded for a particular instance. Parameters without default values must
also be recorded. It would be highly inefficient to redefine a complete protocol for
every single deviation that occurs. FuGE handles this by separating the definition

of a protocol from the object that annotates the occurrence of a protocol. The
GenericProtocolApplication class references the parent GenericProtocol
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Figure 7: The Protocol package contains classes that can provide parameters
with default and instance values.
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Figure 8: ProtocolApplication records an instance of a protocol.
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class and provides a place for annotating deviations and runtime parameter
values, inherited from ProtocolApplication (Figure 8). It also provides mech-
anisms for recording the operator of the procedure and the date performed,
both criteria that have been shown to be important when identifying and ac-
counting for confounding factors in data analysis [12]. There are associations
from GenericProtocolApplication (inherited from ProtocolApplication) to
EquipmentApplication and SoftwareApplication, which record the parame-
ter values used in conjunction with the software or equipment (Figure 8).

The division of the Protocol package into the abstract and non-abstract
classes is to provide a simple framework for creating models of protocols, equip-
ment, software, parameters and actions that are specific to a certain technol-
ogy. For example, a developer may wish to create a model in UML of im-
age acquisition that has the relevant steps, parameters and equipment with-
out relying on external ontologies to supply these details. In this case, the
Protocol class could be extended with ImageAcquisition, Equipment ex-
tended with Scanner, and Action extended with Calibration and Scan to
represent specific steps within the protocol that must be reported. The as-
sociations between several of the classes in the Protocol package are also
abstract (denoted by <<abstract association>> on Figure 4). These as-
sociations should also be extended using a UML inheritance association,
which allows a FuGE compliant parser to process extension of the format.
A guide for how to build extensions to FuGE is provided on the website
(http://fuge.sourceforge.net/dev/ExtendingM2.php).

2.2 Modules for Representation of Biological Data Stan-

dards

2.2.1 The treatment of materials

The biological samples and the types of procedures that act on them are mod-
eled in the FuGE.Bio.Material package (Figure 9). The model seeks to be
simple, robust and flexible for representing these concepts. Simple and flex-
ible object models allow for the representation of a wide variety of concepts
using clear and consistent semantics. All biological materials from whole or-
ganisms to reagents are represented by the class GenericMaterial, which ex-
tends from an abstract Material class. The representation is robust since any
GenericMaterial can have a set of annotations from external sources that can
completely define its attributes and behavior. Material has three named associ-
ations for capturing ontological information: MaterialType, Characteristics
and QualityControlStatistics. This leaves FuGE free from defining the con-
tent and constraints of objects in a domain, instead shifting the focus on to the
domain’s knowledge experts who can build ontologies that capture complete
definitions of the required concepts. However, as for Protocol, two classes are
provided: the abstract Material class and the non-abstract GenericMaterial
class. If an extension developer wishes to extend the model in UML rather than
by developing ontologies, the Material class can be extended by subclassing.
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Figure 9: The Material package in FuGE .

GenericProtocolApplication can be used to define actions that take a set
of input Materials (either GenericMaterials or a subclasses of Material de-
fined in an extension) to produce a set of new output Materials (Figure 9).
The instance of GenericProtocolApplication can reference the correspond-
ing GenericProtocol definition (or a relevant extension of Protocol). The
input Material to a GenericProtocolApplication can be quantified using
the GenericMaterialMeasurement class. Any GenericMaterialMeasurement

that does not have a defined measurement assumes that the treatment used all
of the Material available. Since Materials are Identifiable, the history of
biological samples and their descendents can be traced. This can be done across
treatments, analyses and experiments. Starting Materials (sources of biologi-
cal material) can be determined as they are not specified as the output from any
treatment. The Identifiable functionality of Material will enable collating
and combining of data from different technologies that have been applied to the
same sample.

It is also worth noting that a GenericProtocolApplication can take Data

as input and produce Data as output, primarily for describing the acquisition
or transformation of data as described below. However, there are also cases
where a treatment involving Materials can produce both new Material and
Data. One notable example is a liquid chromatography (LC) separation that
splits a complex protein mixture by size, molecular charge or hydrophobicity.
An LC process typically produces not only the output fractions, but also a
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Figure 10: GenericProtocolApplication can take Material and/or Data as
input, producing Material and Data as output.

chromatogram of the protein or peptide abundance across all fractions as a
function of elution time, which could be viewed as a data item. Furthermore,
there are examples of treatments on Materials that can take Data as input.
An example being the use of a robotic spot picker to extract plugs from two
dimensional gels, which take a list of spot coordinates (a data item) as input.
This could be encoded in FuGE as a GenericProtocolApplication that takes
a instance of Material (the gel) and an instance of Data (the spot coordinates)
as input, producing an output of multiple Material objects corresponding to
each gel spot extracted.

The abstract ProtocolApplication class provides the framework for ex-
tending to build more specific models for certain techniques. For example,
an extension could be developed for liquid chromatography, LCApplication,
where LCApplication references GenericMaterial for the input, but pro-
duces as output a Fraction (defined as a subclass of Material) rather than
a GenericMaterial and a Chromatogram (defined as a subclass of Data). This
allows the specifics of a workflow, in terms of inputs and outputs to processes,
to be encoded in a UML extension rather than by defining ontologies

2.2.2 The production or transformation of Data

Acquisitions of data are also represented by the GenericProtocolApplication
class, which take instances of Material as input, producing sets of raw
data, represented by the Data class (Figure 10). Once data are generated,
they often must be transformed into other formats, combined, or manipu-
lated to enable a coherent conclusion to be derived. Thus a further usage of
GenericProtocolApplication can be made, in which input Data are trans-
formed to produce new sets of Data. Examples of a transformation are nor-
malizations, file format changes, and data reduction. Analysis pipelines can
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Figure 11: The Data package in FuGE .

be encoded by combining a series of GenericProtocols within a hierarchical
structure in which the top-level GenericProtocol represents the entire pipeline
and sub-protocols represent individual transformations.

2.2.3 Experimental Data

So far we have talked about the Data as an abstract concept. Data acquired
from most high-throughput technologies can be represented as a matrix of val-
ues. Even images can be considered a two dimensional matrix of pixel hue
and intensity utilizing a standard (x,y) coordinate system for the dimensions
of the matrix. The FuGE Data object has been designed to enable representing
n-dimensional data matrices (Figure 11).

The definition of Data axes, or Dimensions, are re-usable across Data in-
stances. This saves space when the Data instances all have a very regular struc-
ture, such as multiple microarray results done on a single type of chip. The
Dimensions of the data acquired from the microarray are defined once, and all
Data items refer to these same Dimensions.

Reusable dimensions also separates the description of the data format from
the actual data instances, allowing for software manufacturers to publish the
specifications on their data formats using a standard (and software friendly)
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mechanism. The disassociation of data instances from the descriptive attributes
has worked well for atmospheric researchers [13, 14].

External data formats that are not directly represented in FuGE can be refer-
enced in the file system using the ExternalData object’s URI association (inher-
ited from Describable). There is additionally a named association to URI for
the storing a definition or documentation about the external file format used.
This mechanism allows for the procedures and input materials from which the
data was produced to be captured. Furthermore, FuGE can specify transforma-
tions of data represented in external formats in a “black box” manner using
the GenericProtocol class without requiring knowledge of the exact format of
the data files. The downside of representing data in external formats is that
additional processing software is required (alongside a FuGE parser) to read the
data or query data files. However, for most cases this will work in practice be-
cause parsers for data files can usually be developed much quicker than a data
standard can develop. The result is that FuGE allows the meta-data resulting
from an investigation to be captured without preempting the formats of data
files that will exist for each functional genomics technique.

The Data package also has concepts for relating particular subsets of
data together (Figure 11). The DataPartition class can be used to de-
scribe a particular subset of a multidimensional data set by referencing cer-
tain DimensionElements and the storage matrix or external file in which the
data are stored. The PartitionPair class references two DataPartitions,
corresponding to a subset of the input Data to and output Data from the
ProtocolApplication. The instance of PartitionPair can be used for multi-
ple purposes, such as for describing “supporting evidence” where certain re-
sults in the output Data are dependent only on certain parts of the input
Data set. The algorithm that relates the input DataPartition to the output
DataPartition can be captured using the association to Description.

2.2.4 Investigational Designs

Many journals have started to require a minimum set of reporting guidelines
for the microarray field, in the form of the MIAME requirements list [4]. It is
highly likely that the same will hold true for proteomics data in the near future
as the MIAPE standard matures [15].

Common to both of these guidelines is a section of reporting requirements
that deal with the overall goal and design of the investigation. Example require-
ments for MIAME include

1. What is the high-level description of the motivation for the production of
such an experiment?

2. What were the experimental factors (variables) of interest?

3. What portions of the data apply to which factors?

These requirements are met in the FuGE.Bio.Investigation package (Fig-
ure 12). The Investigation class captures the name and description of the
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Figure 12: The Investigation package in FuGE .
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entire investigation, with an association to OntologyTerm for the type of investi-
gation design. Suitable terms from MO include: “methodological design”, “bio-
logical property” or “perturbational design”. Investigation has an association
to Material representing the important sources of material, as determined by
the investigator, for the purpose of providing a summary in the Investigation
package which can be queried. The Material could be of any type, including
a single organism, a population, a tissue, a cell culture and so on. An instance
of InvestigationComponent represents a single functional genomics technique
used within this investigation and it allows the user to specify the number of
replicates performed, the normalization strategy and quality control. Such prop-
erties are given prominence in the MIAME guidelines and are likely to feature
in MIAPE as they provide a brief overview of the quality of a study. There is
also an association from InvestigationComponent to OntologyTerm to capture
the design with respect to the particular technology, for example “dye swap”.
The principal comparators in an investigation are modeled by Factor, such a
“time course”, “genetic difference”, “environmental factor” and so on. Factors
can, but need not, be shared across different InvestigationComponents; for
instance certain technologies might be used to measure certain factors but not
others. The actual values for factors are stored in FactorValue and the asso-
ciation to OntologyTerm (for measurements or standard terms, such as a gene
name from a knock out experiment). FactorValues have an association to
DimensionElement referencing the set of data values that correspond to that
factor.

There is an association from Investigation to HigherLevelAnalysis for
representing analyses that are specific to a technology, and the Data on which
such analyses are based. It is intended that HigherLevelAnalysis will be ex-
tended by developers of standards for single domains, one example is an analysis
of microarray data for genotyping.

2.2.5 Biological molecules

The majority of data formats in functional genomics have some concept of the
computational representation of a molecule (as opposed to that which phys-
ically exists) that has been identified or measured in the experiment. The
FuGE.Bio.ConceptualMolecule package contains a simple model of biological
sequences that could be used for genomes, RNA reporters on microarrays or
protein sequences identified in proteomics (Figure 13). The package also acts as
a placeholder for extension with other models such as metabolites or chemical
compounds.

3 Discussion and Conclusions

The previous sections outlined the major components that are required to
understand the FuGE proposal. We saw that basic functionality, such as at-
taching descriptions and audit information, are gained by inheritance from the
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Figure 13: The ConceptualMolecule package.

Describable class. We also saw that classes which are Identifiable can be ref-
erenced in a standard way by other classes in the model, and they can reference
outside sources of information. The model of protocols allows rich descriptions
of parameters, ordered sets of actions, and references to other protocols for rep-
resenting complex procedures. Deviations and observed values from completed
protocols can be captured using the ProtocolApplication class.

The FuGE.Bio package takes advantage of these mechanisms to provide a
solid foundation for data standards focused on representing functional genomics
experiments. It provides facilities to describe bench procedures and experimen-
tal assays. It allows for cataloging of data acquired from biological samples and
further analysis of those data. Lastly, it provides constructs for outlining the
high-level goals of an investigation.

It is important to stress that FuGE is not an effort to unify all functional
genomics data formats into one standard. Such an attempt would require a
vastly complex (or overly generalised) proposal and agreement from a number
of standards bodies, which is unlikely to be achievable. Instead, FuGE aims to
provide a model of the components that are common to all functional genomics
techniques, which can be used by standards developers to produce usable for-
mats. We believe that there are substantial advantages to using FuGE, not least
that if it receives wide spread support, integration of data produced by different
techniques will be facilitated. At present, MGED and PSI are committed to
using FuGE in the development of their next standard formats for microarrays
and separation-based proteomics respectively. FuGE is also being implemented
by several industrial and research organisations (Fred Hutchinson Cancer Re-
search Centre, Rosetta and Genologics). FuGE is currently being tested with use
cases from the microarray and proteomics domain, and early proposals involving
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metabolomics are also being discussed. We would like to encourage feedback
from producers of functional genomics data, and systems developers. The over-
all goal of FuGE is to facilitate the production of data standards that serve the
needs of each community and to foster improved compatibility between different
formats.
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