Extensible Framework for Standards in
Functional Genomics

Angel Pizarro!, Andrew Jones?, Paul Spellman?,
Michael Miller*, Patricia Whetzel® and the FuGE working group

November 30, 2005

Institute for Translational Medicine and Therapeutics, University of Pennsyl-
vania, Philadelphia, USA

2School of Computer Science, University of Manchester, UK

3 Lawrence Berkeley National Laboratory, University of California

4Rosetta Inpharmatics

®Center for Bioinformatics, University of Pennsylvania

Note: This version of “Extensible Framework for Standards in
Functional Genomics” corresponds with FuGE milestone 1 only.

1 Background
Functional genomics can be defined as:

an area of study aimed at determining the function of genes and the
proteins they encode in determining traits, physiology or develop-
ment of an organism. Generally the term is used for an experimental
approach utilizing computational and high-throughput technologies
at the level of whole genomes. [1]

Ambitious in breadth and scope, these high-throughput experimental ap-
proaches produce volumes of interrelated data, many of which are in completely
different native formats. Much worse, all of these data are, for the most part,
completely disassociated from the experimental protocol information that led
to the data.

Recent data transfer standards and reporting recommendations have allevi-
ated some of these concerns for a subset of technologies [2, 3, 4, 5], but only
for those technologies. In each case, the standards body chose to model shared
aspects of functional genomics experiments independently, using different vo-
cabularies and levels of detail. The result is that each standard represents
semantically equivalent information in syntactically incompatible ways.

When proposals for data standards for microarray (MAGE) [5] and pro-
teomics (PEDRo) [2] technologies emerged, attempts were made to merge these
models into a single standard, with varying degrees of success [6, 7]. The con-
clusion from these efforts is that a comprehensive standard for microarrays and
proteomics would be large and complex, hindering adoption by the community
and vendors. Furthermore, the standard would still leave much of the functional
genomics domain unaccounted for.

Instead of trying to provide a complete stand-alone solution, we have at-
tempted to model the common aspects of functional genomics experiments, such
as sample preparation, contact information, and protocols, and tackle the prob-
lem of representing different functional genomics technologies in two ways.

First, we provide general structures for referencing external data formats
while capturing the meta data that gives the format a context within an entire
investigation. The external files can either be open standards, or proprietary
formats. Such a mechanism allows us to leverage the currently available formats,
and in addition allows the collation and annotation of functional genomics ex-
periments that cross technologies. It also allows one to augment a standard that
does not provide as rich a model for defining sample preparation.

Second, these same reference points act as placeholders for defining exten-
sions to the model that are specific to a functional genomics technology. Such
extended models gain a rich set of functionality from the core model, as well as
having a structural basis shared with other standards, enabling future integra-
tion of data.

The Functional Genomics Experiment (FuGE) object model seeks to provide
a framework for standards development efforts in the life science domain. It is
subdivided into two main areas, one providing the basic functionality needed
for data standards in general (FuGE.Common), and the other providing specific
modules tailored for biological data standards (FuGE.Bio), such as structures
to capture details of experimental design and annotation of biological samples.

In the following section, there are descriptions of these two main areas of
the FuGE model. This document does not cover all aspects in depth but instead
aims to provide a solid introduction to the main concepts. We refer to the
developer documentation for further reading [8]. Since FuGE is specified using
the Universal Modeling Language (UML) [9], it is assumed that the reader
is familiar with some basic object oriented concepts, such as objects, classes,
packages and inheritance, although this is not essential.

2 Results
2.1 The FuGE Object Model

The FuGE object model seeks to provide a framework to assist the development of
other biological data standards. It does so by providing a UML abstract model of
the concepts common to most functional genomics experiments. Model-Driven-
Architecture (MDA) approaches are then used to generate platform-specific im-

NameValueType

Description | 0..* Descriptions 1 | Describable | 1 PropertySets 0. |-name : String [0..1]
oxt - Sting 0.1 . N +propertySets |-value : String [0..1]
g [0..1] +descriptions] 0.. -type : String [0.1]
Annotations
0.1 +annotations
URI 0.*
-uri : URI[0..1] AuditTrail OntologyIndividual
+auditTrail \ 0..*
0..1
- Audit
Security "
Identifiable -date : Date [1]
-identifier : String [1] -action : enum {creation,modification,deletion} [1]
-name : String [0..1]

BibliographicReferences

ibliographicReferences \ DatabaseReferences

BibliographicReference +databaseReferences

-authors : String [0..1]

-publication : String [0..1] 0.*

-publisher : String [0..1]

-editor : String [0..1] DEiEleEeEiSiily

-year : Date [0..1] -accession : String [1]

-volume : String [0..1] -accessionVersion : String [0..1]
-issue : String [0..1]

-pages : String [0..1]
-title : String [0..1]

Figure 1: The main set of base classes in FuGE . All subsequent classes in-
herit from either one or both of the two abstract classes Describable and
Identifiable.

plementations of the model, such as an XML schema, a relational database
schema, and software libraries. The XML Schema is of primary interest for
standardisation, since it specifies the data transfer format in XML and allows
data to be validated against the standard.

The FuGE.Common package provides a solid foundation for data standards
from any domain as it does not contain any information specific to biological
investigation. FuGE.Common provides mechanisms for referencing external data-
bases, controlled vocabularies, auditing and security, which are described in the
rest of Section 2.1

Every object of the FuGE model is a descendent of either one or both of
two base classes (Figure 1), which are themselves arranged in a hierarchy. The
first and most basic class, Describable, provides functionality for aiding in-
house management of the format, enabling the annotation of objects with plain
text or with controlled vocabulary terms. Every object in FuGE is a subclass
of Describable, which allows a URI to be specified for the object and audit
information to be attached, such as managing changes to the document (when,
who and what change has been made, Figure 2). Describable also provides
a mechanism for specifying the security settings of the object, such as groups
of users that have read or write access. Much of the support mechanisms for

OntologyIndividual

Security
1hrole
Role 1
0.” SecurityRights
ContactRole
+owner 0..+ | +securityRights
0.” Contact SecurityAccess
+contac 0.
h Contact 0.*
-address : String [0..1] X
Audit -phone : String [0..1] AccessGroup ceessRight
0 Performer -email : String [0..1])
-date : Date [1] & 0.1 f (v String [0..1] +members +accessRight
-action : enum {creation,modification,deletion} [1] +performer |-tollFreePhone : String [0..1] W] +accessGroup
: b o1
T 0.7 SecurityGroup OntologyIndividual
Person iliat 5 =
. +affiliations rganization
-lastName : String [0..1] |0 Affiliations B +parent
-firstName : String [0..1] phreht
-midnitials : String [0..1] 0.*

Figure 2: The Audit package allows an audit trail and security settings to be
attached to objects.

defining a rich standard are represented by the associations from this class.

The other base class, Identifiable, inherits from Describable (thus gain-
ing all of its functionality) and adds a referencing mechanism. As the name
Identifiable suggests, classes which inherit from it are able to be referenced
by other classes. This is done by virtue of the identifier attribute. The
identifier attribute is understood to be a globally unique string that resolves
a particular instance of the object. The “globally unique” restriction implies
that there is exactly one and only one object with a particular identifier, and
that this identifier must always reference only that particular object. The name
attribute stores a human readable name for the object that need not be unique.

When using FuGE within internal pipelines the definition of “global” can
be relaxed to mean “system-wide”, since the identification string need only be
unique within that system. The globally unique issue arises only if the data are
to be published to central repositories or shared among collaborators. When
this situation arises, one can always qualify internal identifiers with a prefix such
as the name of the institution. Another alternative is the life science identifier
(LSID) proposal [10]. In the Web services world, identifiers usually take the
form of URLs.

The use of globally unique identifiers provide several practical advantages,
such as compact representation within file formats. For example, entities such
as biological samples with rich sets of annotations can be referred to using their

respective identifier. The underlying data store or data transfer standard can
then save space if the object has been used in multiple settings by utilizing this
string instead of repeating the information. The Identifiable objects also
allow for federated data stores, by enabling large and complex experiments to
be broken down into more easily manageable components while not losing the
relationships that exist between each piece.

2.1.1 Referencing Outside Sources of Information

Descendants of Identifiable are also able to provide references to outside
sources of information. Identifiable objects reference these external sources
via the DatabaseEntry class. A DatabaseEntry contains a reference to the
source of the entry (the Database), as well as the string, stored in the accession
attribute, used within that source to identify uniquely the concept being ref-
erenced by the FuGE object. The use of the name “accession” highlights the
distinction between FuGE identifiers and another system’s identification scheme.
These outside sources have no knowledge of FuGE, or the way in which FuGE de-
fines identification strings. They also do not constrain their internal identifiers
to be globally unique with respect to other sources. However, this mechanism
could also be used for referencing a FuGE object stored in a database.

FuGE can be described as a reference model, in that it is designed not to
recreate an external system’s representation of a concept. Any information ref-
erenced from an external source must be interpreted within that system, not
FuGE. This is especially important when referencing terms from an ontology.
Ontologies are developed by specific user communities for their particular do-
main. The terms within an ontology have interdependent relationships that
define the full scope of each term. When evaluating whether an association
from FuGE object to an ontology term is semantically correct, one would need
to put the term in its proper context. Specifically, one would need to evaluate
whether the annotation was correct given the definition of the term within its
source system and the association to other terms in the ontology that may or
may not have been referenced by the FuGE object.

It is vital for understanding FuGE that inheritance from these two base classes
is ubiquitous to all objects. When reading the rest of this document, it is im-
portant to remember that all objects have the Describable functionality and
most have the Identifiable functionality, but that these attributes and asso-
ciations are not shown on the UML diagrams. We refer the reader to the FuGE
developer’s documentation [8] to determine whether a class is Identifiable.

2.1.2 Referencing external vocabularies and ontological sources

The use of standard vocabularies and ontologies for annotation of experimental
data is vital to the goal of combining data from different functional genomics
technologies. FuGE provides a rich model for referencing terms from arbitrary
external ontology sources. The OntologyIndividual class provides a mecha-
nism for representing ontological classes, instances of classes and terms from

Identifiable OntologyTerm
-identifier : String [1] +ontologyURI : URI [0..1]
-name : String [0..1] +ontologyTermURI : URI [0..1]
, Properties
OntologyProperty | 0-- OntologyIndividual
+properties
1.7
T +content

DataProperty

Content

ObjectProperty

*

+dataType : String [0..1]
+value : String [0..1]

Figure 3: OntologyIndividual represents instance terms from outside ontolog-
ical sources.

simple controlled vocabularies (Figure 3). The source of a term can be specified
using the attributes ontologyURI or ontologyTermURI. The name attribute, in-
herited from Identifiable, stores the term itself (or the name of the ontology
class), and the identifier attribute stores a unique identifier for the instance
of the term used within FuGE.

In an ontology, classes can be related to each other through associations.
Such associations are modelled in FuGE by the abstract class OntologyProperty.
If the association is between two terms, ObjectProperty models the as-
sociation from the parent concept to the child that is also modelled by
OntologyIndividual. The ObjectProperty class is required, rather than sim-
ply having a self-association on OntologyIndividual, because the association
itself may be a named concept in the ontology with a definition that should be
referenced, for example using the ontologyTermURI attribute. A second type
of association exists in ontologies, modelled by DataProperty, which specifies
that a value can be entered by the user of the ontology to complete the concept.
The examples below demonstrates the use of these classes within a practical
setting.

A simple controlled vocabulary term (the species name Mus musculus) can
be represented by this structure:

<OntologyIndividual identifier="FuGE.O0I.1001" name="Mus musculus"
ontologyURI="http://www.ncbi.nlm.nih.gov/Taxonomy"/>

The following example demonstrates the representation of a more complex
concept. In this case, the concept (“4 hours”) is modelled as a measurement
with a value and a unit.

OntologyIndividual | +actionTerm ActionTerm
0..1

+model 0..1

EquipmentModel

Equipment

+equipment

0.. X
+equipment | 0..* Equipment

ProtocolOutputTypes ProtocollnputTypes

ProtocolActions +actions

0N, o

s 1 Action
SoftwareREquipment Protocol

0.” +protocolReference
0.1
0.1 ProtocolReference

-actionOrdinal : int [0..1]
-actionText : String [0..1]

+softwares| g =

Software

-version : String [0..1]

Figure 4: The package representing definitions of protocols in functional ge-
nomics experiments. Protocols can have a set of parameters, with the option
for specifying a unit and a default measurement. Protocols also contain a set of
ordered actions. Actions may exclusively define text for the action, reference an
ontology term defining that action, or reference a sub-protocol (for representing
complex protocols).

<OntologyIndividual identifier="FuGE.0I.1003" name="Measurement"
ontologyTermURI="http://mged.sourceforge.net/ontologies/MGEDontology.php#Measurement">
<properties>
<DataProperty identifier="FuGE.DataProperty.101" value="4" name="has_value"
ontologyTermURI="http://mged.sourceforge.net/ontologies/MGEDontology .php#has_value"/>
<0bjectProperty identifier="FuGE.ObjectProperty.101" name="has_unit">
<content>
<OntologyIndividual_ref identifier_ref="FuGE.(0I.1004"/>
</content>
</0bjectProperty>
</properties>
</OntologyIndividual>
<OntologyIndividual identifier="FuGE.0I.1004" name="hours"
ontologyTermURI="http://mged.sourceforge.net/ontologies/MGEDontology.php#hours"/>

2.1.3 Protocols and Workflows

A protocol in functional genomics usually consists of a procedure described by a
set of ordered actions. The procedure may have a set of inputs, parameters, and
produces a set of outputs. Complex protocols can be broken down into a set
of simpler protocols that may or may not have their own specific parameters,
inputs and outputs. The FuGE.Common.Protocol package has structures to
represent these requirements.

Action 1

Protocol 1 Action 2

Action 3 Protocol 2

Parameter 1 Parameter 2

Figure 5: A summary of the structure of a protocol in FuGE that has two para-
meters and three actions, one of which is a reference to a further protocol.

The individual steps of a protocol are designated by the Action class (Fig-
ure 4). A Protocol contains an ordered set of Actions. These Actions are
understood to be atomic instructions such as “wait 10 minutes”. The order of
an Action is determined by the actionOrdinal attribute. Actions with du-
plicate ordinals are understood to be conducted in parallel. An Action can be
specified either by free text entered by the user or it can reference an ontology
containing a standard action term, such as the MGED Ontology (MO, [11]).
The Protocol class can also specify the intended input and output types using
ontology terms, such as certain material or data types.

Complex procedures, or workflows, in laboratories are usually composed of a
set of simpler protocols that are to be completed in some particular order. Since
the Protocol class is Identifiable, defining these types of complex workflows
is straightforward, by creating new Protocols that reference the simpler ones.
Sub-protocols are referenced using the Action class, thus inheriting the same
ordering scheme and allowing combinations of simple instructions among the
references to sub-protocols (Figure 5 shows a simplified diagram of the FuGE
representation of protocols).

The Protocol class can have a set of defined parameters, modeled by as-
sociations to the Parameter class (Figure 6). Each Parameter can have a
unit type and a default value specified via associations to an outside ontol-
ogy. The actual values used when a protocol is implemented are recorded by
ProtocolApplication, as described below. A Protocol can be associated with
Equipment and Software, which can also have a set of parameters defined with
controlled vocabulary terms. There is an association between Equipment and
Software to record that a piece of software is intrinsically linked to an in-
strument, which may be important if a Protocol is associated with numerous
instances of Equipment and Software.

Frequently, deviations from the default parameter values of a protocol must
be recorded for a particular instance. Parameters without default values must
also be recorded. It would be highly inefficient to redefine a complete protocol for

ParameterType
0.

Tx

ParameterValue

+parameterType

+value

OntologyIndividual

Parameter | 1
ContactRole
0.*
+parameters 7 0.." 0.*
0..* \+provider
Parameters
Provide ParametgerType
1
1 +parameterTyp
Parameterizable | . * Types +types
0."
AN
Equipment Software Protocol

-version : String [0..1]

Figure 6: The Protocol packag

For the associations
between Software,
Equipment and Protocol,
see the Protocol diagram

with default and instance values.

EquipmentApplication

-serialNumber : String [0..1]

0.* 0..*
Equipment
1 | +equipment
Equipment
+equipment | 0..*

SoftwareREquipment

+softwares | 0..* 1 191
Software SoftwareApplications
-version : String [0..1] Perforhers
1 +performers
+software 0.
Software
0.* 0. _~%softwareApplications ContactRole

SoftwareApplication

equipmentApplications

EquipmentApplications

+parameterValues

ParameterValues

ParameterizableApplication

Ay

ProtocolApplication

SoftwareApplication

EquipmentApplication

-activityDate : String [0..1]

-serialNumber : String [0..1]

For the associations between
SoftwareApplication,
EquipmentApplication and
ProtocolApplication, see the
ProtocolApplication diagram.

Protocol

1 +protocol

Protocol

e contains classes that can provide parameters

Action

-actionOrdinal : int [0..1]
-actionText : String [0..1]

ActionApplications

0.*

S

ProtocolApplication

-activityDate : String [0..1]

+actionAppIica3io*

+action

Action

0.*

ActionApplication

0..1
+protocolApplicationReference
rotocolApplicationReference

ProtocolDeviation

+protocolDevr

Figure 7: ProtocolApplication records an instance of a protocol.

0.1 1

ActionDeviation

+actionDeviation
0..1

Description

-text : String [0..1]

every single deviation that occurs. FuGE handles this by separating the definition
of a protocol from the object that annotates the occurrence of a protocol. The
ProtocolApplication class references the parent Protocol class and provides
a place for annotating deviations and runtime parameter values (Figure 7).
It also provides mechanisms for recording the operator of the procedure and
the date performed, both criteria that have been shown to be important when
identifying and accounting for confounding factors in data analysis [12]. There
are associations from ProtocolApplication to EquipmentApplication and
SoftwareApplication, which record the parameter values used in conjunction
with the software or equipment.

2.2 Modules for Representation of Biological Data Stan-
dards

2.2.1 The treatment of Materials

The biological samples and the types of procedures that act on them are modeled
in the FuGE.Bio.Material package (Figure 8). The model seeks to be simple,
robust and flexible for representing these concepts. Simple and flexible object
models allow for the representation of a wide variety of concepts using clear and
consistent semantics. All biological materials from whole organisms to reagents
are represented by a single class, Material. The representation is robust since
any Material can have a set of annotations from external sources that can
completely define the attributes and behavior of the Material. Material has
three named associations for capturing ontological information: MaterialType,
Characteristics and QualityControlStatistics. This leaves FuGE free from
defining the content and constraints of objects in a domain, instead shifting
the focus on to the domain’s knowledge experts who can build ontologies that
capture complete definitions of the required concepts.

ProtocolApplication can be used to define actions that take a set of in-
put Materials to produce a set of new output Materials (Figure 8). The
instance of ProtocolApplication references the corresponding Protocol de-
finition. The input Material to a ProtocolApplication can be quantified
using the MaterialMeasurement class. Any MaterialMeasurement that does
not have a defined measurement assumes that the treatment used all of the
Material available. Since Materials are Identifiable, the history of bio-
logical samples and their descendents can be traced. This can be done across
treatments, analyses and experiments. Starting Materials (sources of biologi-
cal material) can be determined as they are not specified as the output from any
treatment. The Identifiable functionality of Material will enable collating
and combining of data from different technologies that have been applied to the
same sample.

It is also worth noting that a ProtocolApplication can take Data as in-
put and produce Data as output, primarily for describing the acquisition or
transformation of data as described below. However, there are also cases where
a treatment involving Materials can produce both new Material and Data.

10

ProtocolApplication

tivityDate : String [0..1]

InputMaterials OutputMaterials

OntologyIndividual

0..
+measurement materialType

+cha
+qualityContrglStatistics MaterialType
Measuremen,

+inputMaterials

1o O 0. \0.* | 0.r
Material

MaterialMeasurement 0.*

Material teri +outputMaterials

1 0.*
1

0.” 0.
Contaefs
+contacts +components
0.

! Contact 0..* | ContactRole Components
Contact
+contact

Figure 8: The Material package in FuGE .

One notable example is a liquid chromatography (LC) separation that splits a
complex protein mixture by size, molecular charge or hydrophobicity. An LC
process typically produces not only the output fractions, but also a chromato-
graph of the protein or peptide abundance across all fractions as a function of
elution time, which could be viewed as a data item. Furthermore, there are
examples of treatments on Materials that can take Data as input. An example
being the use of a robotic spot picker to extract plugs from two dimensional
gels, which take a list of spot coordinates (a data item) as input. This could be
encoded in FuGE as a ProtocolApplication that takes a instance of Material
(the gel) and an instance of Data (the spot coordinates) as input, producing an
output of multiple Material objects corresponding to each gel spot extracted.

2.2.2 The production or transformation of Data

Acquisitions of data are also represented by the ProtocolApplication class,
which take instances of Material as input, producing sets of raw data, repre-
sented by the Data class (Figure 9). Once data are generated, they often must
be transformed into other formats, combined, or manipulated to enable a coher-
ent conclusion to be derived. Thus a further usage of ProtocolApplication
can be made, in which input Data are transformed to produce new sets of Data.
Examples of a transformation are normalizations, file format changes, and data
reduction. Analysis pipelines can be encoded by combining a series of Protocols
within a hierarchical structure in which the top-level Protocol represents the
entire pipeline and sub-protocols represent individual transformations.

11

ProtocolApplication

-activityDate : String [0..1]

MaterialMeasurement) InputData OutputData
OutputMaterials|
0.*
Material
+outpytMaterials ;
Measurement +inputData +outputData
> 0.* 0.. 0.*
+material ~\{
+measurement Material Data
0..1

OntologyIndividual

Figure 9: ProtocolApplication can take Material and/or Data as input, pro-
ducing Material and Data as output.

2.2.3 Experimental Data

So far we have talked about the Data as an abstract concept. Data acquired
from most high-throughput technologies can be represented as a matrix of val-
ues. Even images can be considered a two dimensional matrix of pixel hue
and intensity utilizing a standard (x,y) coordinate system for the dimensions
of the matrix. The FuGE Data object has been designed to enable representing
n-dimensional data matrices (Figure 10).

The definition of Data axes, or Dimensions, are re-usable across Data in-
stances. This saves space when the Data instances all have a very regular struc-
ture, such as multiple microarray results done on a single type of chip. The
Dimensions of the data acquired from the microarray are defined once, and all
Data items refer to these same Dimensions.

Reusable dimensions also separates the description of the data format from
the actual data instances, allowing for software manufacturers to publish the
specifications on their data formats using a standard (and software friendly)
mechanism. The disassociation of data instances from the descriptive attributes
has worked well for atmospheric researchers [13, 14].

External data formats that are not directly represented in FuGE can be refer-
enced in the file system using the ExternalData object’s URI association (inher-
ited from Describable). There is additionally a named association to URI for
the storing a definition or documentation about the external file format used.
This mechanism allows for the procedures and input materials from which the
data was produced to be captured. Furthermore, FuGE can specify transforma-
tions of data represented in external formats in a “black box” manner using

12

ProtocolApplication

-activityDate : String [0..1]

0..1

OutputData

+outputData
0.))

Data Dimension - - 0.*
+dimension | Dimension |~
0. 0..*
{ordered} 1 DimensionElements
{ordered}
0.. +dimensionElements
DimensionElement
+dimensionElements 0. DimengionType
InternalData ExternalData DimensionElements
-storage : Object[] [0..1]
1 0.* 0..*
FileFormat DataPartition
ExternalFormatDoumentation +fileFormat
+externalFormatDocumentation +dimensionType
0.1 OntologyIndividual | °!
URI
-uri : URI[1]

Figure 10: The Data package in FuGE .

13

the Protocol class without requiring knowledge of the exact format of the data
files. The downside of representing data in external formats is that additional
processing software is required (alongside a FuGE parser) to read the data or
query data files. However, for most cases this will work in practice because
parsers for data files can usually be developed much quicker than a data stan-
dard can develop. The result is that FuGE allows the meta-data resulting from
an investigation to be captured without preempting the formats of data files
that will exist for each functional genomics technique.

2.2.4 Investigational Designs

Many journals have started to require a minimum set of reporting guidelines
for the microarray field, in the form of the MIAME requirements list [4]. Tt is
highly likely that the same will hold true for proteomics data in the near future
as the MIAPE standard matures [15].

Common to both of these guidelines is a section of reporting requirements
that deal with the overall goal and design of the investigation. Example require-
ments for MITAME include

1. What is the high-level description of the motivation for the production of
such an experiment?

2. What were the experimental factors (variables) of interest?

3. What portions of the data apply to which factors?

These requirements are met in the FuGE.Bio.Investigation package (Fig-
ure 11). The Investigation class captures the name and description of the
entire investigation, with an association to OntologyIndividual for the type
of investigation design. Suitable terms from MO include: “methodological de-
sign”, “biological property” or “perturbational design”. Investigation has an
association to Material representing the important sources of material, as de-
termined by the investigator, for the purpose of providing a summary in the
Investigation package which can be queried. The Material could be of any
type, including a single organism, a population, a tissue, a cell culture and
so on. An instance of InvestigationComponent represents a single functional
genomics technique used within this investigation and it allows the user to spec-
ify the number of replicates performed, the normalization strategy and quality
control. Such properties are given prominence in the MIAME guidelines and
are likely to feature in MIAPE as they provide a brief overview of the qual-
ity of a study. There is also an association from InvestigationComponent
to OntologyIndividual to capture the design with respect to the particular
technology, for example “dye_swap”. The principal comparators in an inves-
tigation are modeled by Factor, such a “time course”, “genetic difference”,
“environmental factor” and so on. Factors can, but need not, be shared across
different InvestigationComponents; for instance certain technologies might be
used to measure certain factors but not others. The actual values for factors

14

SupportifigData

+suppoytingData

0.*

. Providers
+providers

ContactRole

+sourceMaterials | Material

SourceMaterials

0.2
Investigation 0.*

InvestigationTypes

0.*
Contact

1 4contact

Contact

0.*

HigherLevelAnalysis

Data

0.7

InvestigationComponents

+investigationComponents
0.*

InvestigationComponent @7

QualityControlDescription

NormalizationDescription
+normalizationDescription

0..1

+qualityControlDescription
0.1

Description

0. Q.» 0.7

Factors

-text : String [0..1]

+replicateDescription

ReplicateDescription

0.1

+investigationTypes

+allProtocolAppliCations +factors onentDesignTypes
0. 0.4 0.
ProtocolApplication Factor | 0--* FactorCategory 0-1 [OntologyIndividual
0.."
-activityDate : String [0..1] +factorCategory
1 0-1 Tvalue
Factors
+factorValues
0.*
0.*
FactorValue Value
1
DataPartitions
+dataPartitions 0.*
DataPartition

Figure 11: The Investigation package in FuGE .

15

ConceptualMolecule

Sequence

-length :int [0..1]
-isApproximateLength : boolean [0..1]
-isCircular : boolean [0..1]

-sequence : String [0..1]

-start : int [0..1]

-end :int [0..1]

0.*

SequenceAnnotations

Species
+sequenceAnnotatjons +species
0..1 0.* 0.1
SequenceAnnotation Type +ype OntologyIndividual
0.. 0.1

0. 0..1
PolymerType +polymerType

Figure 12: The ConceptualMolecule package.

are stored in FactorValue and the association to OntologyIndividual (for
measurements or standard terms, such as a gene name from a knock out exper-
iment). FactorValues have an association to DimensionElement referencing
the set of data values that correspond to that factor.

There is an association from Investigation to HigherLevelAnalysis for
representing analyses that are specific to a technology, and the Data on which
such analyses are based. It is intended that HigherLevelAnalysis will be ex-
tended by developers of standards for single domains, one example is an analysis
of microarray data for genotyping.

2.2.5 Biological molecules

The majority of data formats in functional genomics have some concept of the
computational representation of a molecule (as opposed to that which phys-
ically exists) that has been identified or measured in the experiment. The
FuGE.Bio.ConceptualMolecule package contains a simple model of biological
sequences that could be used for genomes, RNA reporters on microarrays or
protein sequences identified in proteomics (Figure 12). The package also acts as
a placeholder for extension with other models such as metabolites or chemical
compounds.

16

3 Discussion and Conclusions

The previous sections outlined the major components that are required to
understand the FuGE proposal. We saw that basic functionality, such as at-
taching descriptions and audit information, are gained by inheritance from the
Describable class. We also saw that classes which are Identifiable can be ref-
erenced in a standard way by other classes in the model, and they can reference
outside sources of information. The model of protocols allows rich descriptions
of parameters, ordered sets of actions, and references to other protocols for rep-
resenting complex procedures. Deviations and observed values from completed
protocols can be captured using the ProtocolApplication class.

The FuGE.Bio package takes advantage of these mechanisms to provide a
solid foundation for data standards focused on representing functional genomics
experiments. It provides facilities to describe bench procedures and experimen-
tal assays. It allows for cataloging of data acquired from biological samples and
further analysis of those data. Lastly, it provides constructs for outlining the
high-level goals of an investigation.

It is important to stress that FuGE is not an effort to unify all functional
genomics data formats into one standard. Such an attempt would require a
vastly complex (or overly generalised) proposal and agreement from a number
of standards bodies, which is unlikely to be achievable. Instead, FuGE aims to
provide a model of the components that are common to all functional genomics
techniques, which can be used by standards developers to produce usable for-
mats. We believe that there are substantial advantages to using FuGE, not least
that if it receives wide spread support, integration of data produced by different
techniques will be facilitated. At present, MGED and PSI are committed to
using FuGE in the development of their next standard formats for microarrays
and separation-based proteomics respectively. FuGE is also being implemented
by several industrial and research organisations (Fred Hutchinson Cancer Re-
search Centre, Rosetta and Genologics). FuGE is currently being tested with use
cases from the microarray and proteomics domain, and early proposals involving
metabolomics are also being discussed. We would like to encourage feedback
from producers of functional genomics data, and systems developers. The over-
all goal of FuGE is to facilitate the production of data standards that serve the
needs of each community and to foster improved compatibility between different
formats.

References

[1] RiceCAP Glossary. URL http://www.uark.edu/ua/ricecap/ricecapgloss.htm.

[2] Taylor, C. et al. A systematic approach to modeling, capturing, and dis-
seminating proteomics experimental data. Nature Biotech 21, 247-254
(2003).

17

[3]

[13]
[14]

[15]

Orchard, S., Zu, W., Julian, R., Hermjakob, H. & Apweiler, R. Further
advances in the development of a data interchange standard for proteomics
data. Proteomics 3, 2065-2066 (2003).

Brazma, A. et al. Minimum information about a microarray experiment
(MIAME) - toward standards for microarray data. Nat Genet 29, 365-371
(2001).

Spellman, P. et al. Design and implementation of microarray gene expres-
sion markup language (MAGE-ML). Genome Biology 3, research0046.1—
research0046.9 (2002). URL
http://genomebiology.com/2002/3/9/research/0046.

Jones, A., Hunt, E., Wastling, J. M., Pizarro, A. & Stoeckert Jr., C. J. An
Object Model and Database for Functional Genomics. Bioinformatics 20,
1583-1590 (2004).

Xirasagar, S. et al. CEBS Object Model for Systems Biology Data, CEBS
MAGE SysBio-OM. Bioinformatics 20, 2004-2015 (2004).

FuGE Developer’s Documentation. URL
http://fuge.sourceforge.net/dev.

OMG - Object management group. URL
http://www.omg.org.

Clark, T., Martin, S. & Liefeld, T. Globally distributed object identification
for biological knowledgebases. Briefings in Bioinformatics 5, 59-70 (2004).

Stoeckert, C. & Parkinson, H. The MGED ontology: a framework for
describing functional genomics experiments. Comparative and Functional
Genomics 4, 127-132 (2003).

Downey, T. Using Statistics to Improve the Quality of Genomic and Pro-
teomic Data URL
http://www.partek.com/html/pr/Scientific-Computing-Partek.pdf.

HDF5. URL http://hdf .ncsa.uiuc.edu/HDF5/.

Rew, R., Davis, G. & Emmerson, S. NetCDF User’s Guide: An Interface
for Data Access (1993).

The MIAPE minimum reporting requirement. URL
http://psidev.sourceforge.net/gps/.

Acknowledgements Many thanks to all the developers of the FuGE object model,
especially the MGED and PSI standards working groups. Thanks also goes to the
SourceForge.net team. Without their support, many open source projects would not
exist.

18

